Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharm Biol ; 60(1): 2049-2087, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2097124

ABSTRACT

CONTEXT: The emergence of zoonotic viruses in the last decades culminating with COVID-19 and challenges posed by the resistance of RNA viruses to antiviral drugs requires the development of new antiviral drugs. OBJECTIVE: This review identifies natural products isolated from Asian and Pacific medicinal plants with in vitro and in vivo antiviral activity towards RNA viruses and analyses their distribution, molecular weights, solubility and modes of action. MATERIALS AND METHODS: All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem and library search from 1961 to 2022. RESULTS: Out of about 350 molecules identified, 43 phenolics, 31 alkaloids, and 28 terpenes were very strongly active against at least one type of RNA virus. These natural products are mainly planar and amphiphilic, with a molecular mass between 200 and 400 g/mol and target viral genome replication. Hydroxytyrosol, silvestrol, lycorine, tylophorine and 12-O-tetradecanoylphorbol 13-acetate with IC50 below 0.01 µg/mL and selectivity index (S.I.) above 100 have the potential to be used for the development of anti-RNA virus leads. DISCUSSION AND CONCLUSIONS: The medicinal plants of Asia and the Pacific are a rich source of natural products with the potential to be developed as lead for the treatment of RNA viral infections.


Subject(s)
Biological Products , COVID-19 , Plants, Medicinal , RNA Viruses , Biological Products/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1875735

ABSTRACT

The secondary metabolites of endemic plants from the Rutaceae family, such as Burkillanthusmalaccensis (Ridl.) Swingle from the rainforest of Malaysia, has not been studied. Burkillanthusmalaccensis (Ridl.) Swingle may produce antibacterial and antibiotic-potentiating secondary metabolites. Hexane, chloroform, and methanol extracts of leaves, bark, wood, pericarps, and endocarps were tested against bacteria by broth microdilution assay and their antibiotic-potentiating activities. Chromatographic separations of hexane extracts of seeds were conducted to investigate effective phytochemicals and their antibacterial activities. Molecular docking studies of werneria chromene and dihydroxyacidissiminol against SARS-CoV-2 virus infection were conducted using AutoDock Vina. The methanol extract of bark inhibited the growth of Staphylococcusaureus, Escherichiacoli, and Pseudomonasaeruginosa with the minimum inhibitory concentration of 250, 500, and 250 µg/mL, respectively. The chloroform extract of endocarps potentiated the activity of imipenem against imipenem-resistant Acinetobacterbaumannii. The hexane extract of seeds increased the sensitivity of P. aeruginosa against ciprofloxacin and levofloxacin. The hexane extract of seeds and chloroform extract of endocarps were chromatographed, yielding werneria chromene and dihydroxyacidissiminol. Werneria chromene was bacteriostatic for P.aeruginosa and P.putida, with MIC/MBC values of 1000 > 1000 µg/mL. Dihydroxyacidissiminol showed the predicted binding energies of -8.1, -7.6, -7.0, and -7.5 kcal/mol with cathepsin L, nsp13 helicase, SARS-CoV-2 main protease, and SARS-CoV-2 spike protein receptor-binding domain S-RBD. Burkillanthusmalaccensis (Ridl.) Swingle can be a potential source of natural products with antibiotic-potentiating activity and that are anti-SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL